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The upper critical pressures of nonshallow spherical shells under uniform exter- 
nal pressure are determined by an asymptotic method [l, 21 as a function of the 
apperture angle and the mode of support. The case is considered when the para- 
meter of relative thin-walledness is sufficiently small. The values found agree 

well with the results of computations by direct numerical methods and permit 
their continuation into the domain of arbitrarily thin shells where a machine 

computation becomes of very low efficiency. 

1. Equation8 and boundary conditions.The Reissner equations for non- 
shallow shells under axisymmetric deformation [l] are considered : 
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with each of the boundary conditions 

1) @ (0) = Y (0) = 0, ii/I (b) = 0, Y (b) = - eku (b) sin b (1.2) 

2) CD (0) = Y (0) = 0 CD (b) = b, N (b) = 0 

3) @ (0) = Y (0) = 0, 0 (b) = b, u (b) = 0 

All the quantities in (1. l), (1.2) are dimensionless and related to the dimensional wan- 

tities by the relationships 

~(1 .= R sin 4, 2” == R cos t, p = 12 (1 - vy, 
h 

ko = kEy$, 
&%=- Hy 

Here @ (j) is an angle which the shell element makes with the horizontal axis before 
and after deformation at a point corresponding to the parameter j ; y,, y,, &I, PV 

are the horizontal and vertical components of the stresses and loads, respectively, uo is 
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the horizontal displacement, Mz is the bending moment, NE is the radial force, E is 

Young’s modulus, Y is the Poisson’s ratio, h is the shell thickness, R is the shellradius, 
ho is the coefficient of elastic slip of the shell edge, and Q is the external load inten- 

sity. 
The boundary conditions in (1.2) correspond to diverse methods of clamping the she.11 

edge. Let us hence investigate the problem (1. l), (1.2) as E --f 0. 

2, Construction of the asymptotic expan8Iona. The method of con- 
structing the asymptotic expansions for the problem (1.1). (1.2) as E --f 0 has been stated 

in [l]. Here, we limit ourselves to the construction of the principal terms of the asymp- 

totics. Assuming E = 0 in (1.1). we obtain 

5 
yo (E) sin @o (5) + cos 00 (f) \ sin L,q (t. CD,0 (5)) dE = 0, cos @,o (5) = cos E; (2.1) 

This system has the solution 
0” 

@Do G) = E, Y’, (E) = - I/* Q sin 2E (2.2) 

which corresponds to the membrane stressed equilibrium mode which agrees with the 

initial surface. The solution (2.2) satisfies (1.1) but does not satisfy the boundary con- 
ditions (1.2). Hence, the asymptotic representation of the solution corresponding to the 
equilibrium mode in the subcritical stage is expanded as E + 0 in the form 

Y (E, E) - - t Q sin 2t + ho (2.3) 

Here the functions go, ho are concentrated in the edge effect zone (in the neighborhood 
of E = 6) and cancel the residual in the functions m. (E) and Yo (5) in complying 

with the boundary conditions (1.2). Furthermore, by using (2.3) we obtain for the right 
side of the first equation in (1. l), by taking account of (2.1) and (2.2) 

I(E, E) = (TO J ItO) sin(E + go) -t Q cm (E tk3d i sin c [cos (5 + go) - COs El 6 + 
0 

1 - 
:!Q sin” 5 cos (5 + go) = - f Q sin 4 sin go + ho sin (E + go) - 
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Let us substitute E, = b - ct and let us find the principal term of the expansion in 
powers of st in the neighborhood of the point E = b. Let us note that the integral in 

the last expression is a quantity of the order of E , and equals 

F s sin b sin b + + go(f) 
b 1 

sin 0’11 (t) 
7 dt $- Q (~~2) 

The solution (2.3) should go over into the solution (2.2) with distance from the bound- 
ary, hence {go (t), ho (t)} -+ 0 as t -+ CO. Let us assume that the last integral hence con- 
verges. Therefore, we have in the neighborhood E = b as E - 0 the following equation: 

I (E, E) = - liz Q sin b sin go (t) + ho (t) sin [b -F go (t)] + 0 (E) 

Proceeding in an analogous manner with the remaining terms in (1. l), we arrive at a 
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system of nonlinear differential equations with appropriate boundary conditions to de- 
termine the functions go (t) and h O (t) 

sin b go” -t l/2 Q sin h sin go - h, sin (b -I-- g,,) = 0 (2.4) 

sin D/z”” - cos (b --I- g,) -t- cos 0 = 0; 

1) s:, (0) z 0, h, (0) -t_ Y, (6) -7 k sin2 bh0’ (0), go (CC) =- ho (LX) = I) (2.5) 

2) go (0) = 0, ho (0) cos b - 1,12 (1 Sill 6 = 0, 6” (cc) m: h ,, (23) 1 0 

3) g,, (0) r= 0, h,,’ (0) = 0, go (cm) = ho (x) 

The conditions at infinity are obtained from the requirement that the asymptotic solu- 
tion (2.3) goes over into (2. S) within the domain. 

In the case of the boundary conditions (3) in (2.5) (an absolutely fixed support) and 
(1) in (2.5) for k = 00 (fixed hinge), it can be shown that, following 123, the values of 
the upper critical pressure Q* == 4. Hence, g, == h, : 0, and the asymptotic represen- 

tations become 11 5 
0 (4, E) - E /- cg:l - i ~~ ), 

/ I,-5 

‘5 F Y” (5, F) - ~ /t -!- Q sill 25 ~.~ F/l1 i\y--- 
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The functions gr, h1 are here determined from the equations and boundary conditions 

61’ + l/2 Qg, --h1 = 0, hl” + g1 =-: 0 

I) h(o) = 0, h' (0) = - 'i, Q (1 -Y), g, (m) = h, (m) = 0 

2) gl' (0) = (1, hl' (0) = - 'iz Q (1 -v), g, (x) = hl (m) z 0 

The formulas for gr, h, are easily written down explicitly.’ 

3. Solution of the edge effect equation, (2A), (l),(2) in (2.5). Let us 
seek the least value of the parameter Q for which still one solution is manifest in any 

sufficiently small neighborhood in the problem (2.4), (1). (2) in (2.5). 
To do this, let us use a method similar to that stated in @ - 41, We seek the solution 

in the form 

go :zz 5 ” n1z211, 
~l?UL~l 

h,, = i hrnn’tR’z~‘2 (3.1) 

m+n>1 ?Ilf!l>l 

21 = qe“J, z2 = c2P, rl = - a - ib, r2 = - a + ib 

a = (‘/z - ‘IX Q)’ 2, b = (l/z + ‘/a Q)“” 

Here q, .z2 are fundamental solutions of the linearized system (2.4) which decrease at 

gn ” _1- ‘,‘, Qgo - h ,, --z 0, ho” + D”” o 

Extracting the linear terms, let us rewrite (2.4) in the form 

gn” + ‘iz Qgo - h ,, = h, (cos g,, - 1) ~ ‘iz Q (sin g,, - go) -(- ctg bh, sin go (3.2) 
ho” f g, = ctg b (cos go ~ 1) - (sin g,, - g,)) 

Now, substituting (3.1) into (3.2) and equating terms of identical powers of ZI”‘::“, we 
obtain a recurrent infinite system of linear algebraic equations to determine the com- 
plex coefficients &?I,) ~8 ( h 7)17L 

g,,,,, 4 (fl1T1 + dfh,, L Cl (am hh.0) 
(3.3) 

l(lrtrl -t ni-A2 + '/2 Ql fiv,,l. -- h,,,,, = G, k/i,,. h I;,,) 
Here G, (gkP, hkP), Gz (ghp, hkP) are functions corresponding to the right sides of the 
system (3.2) which depend on ??kP, h m 1 where k -+ p < 1)~ -I- I, (G, i:i G, G U for 
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m + n = 1). her us limit ourselves to a finite number of terms 1%’ in (3.1). We hence 
replace sin go, cos go in the right side of (3.2) by a series ex~nsion in go, and we set- 

ect the number of terms as a function of N. 

Since an ambiguity in the determination of h,,,, h 01 exists in (3.3), for convenience 

we shall take h,, =G Hence, for any IIL + n > 1 we obtain g,, = g,,, h,, = h,,. 

Therefore, all the coefficients g,,,,,, h,,,, can be calculated by means of ~III, ho,. 
To determine cl, c2 let us substitute (3.1) with known coefficients into the boundary 

conditions (2.5). We obtain a system of two nonlinear equations 

The counting process starts for the value of the parameter Q = 0, for which the problem 

(2.4), (2.5) has the trivial solution c 1 = cz = 0. The values cl (Q), c2 (Q) are sought by 
the Newton method in combination with the method of sequential loading by the para- 

meter Q [Z]. 
Appropriate computation by means of the algorithm described were carried out on an 

“Odra-1024” computer. The selection of the spacing during motion in the parameter was 

accomplished automatically, and the terms in identical powers of zlnzP in the right side 

were grouped by using a polynomial working program. The computations were checked 
by using the first integral 

‘iz sin b [(go’)* - (ht<)z] - ‘iz v sin I, (cm go -- 1) -h&cm (6 + go) - cos bj -= u 

which is obtained from (2.4) if the first equation is multiplied by -go’, the second by 
ho’ and added and integrated between t and CU. Setting t 2.~. 0, and using the appropri- 

ate boundary conditions, we obtain verification formulas for each case of support. Results 

of computing Q* for the boundary conditions (1) from (1.2) are presented below for k = 

0 (lower line) and (2) from (1.2) (upper line), 

b = 0.2, 0.4. 0.6, 0.8, 
::%I6 %5 

l.‘& 1.57 
Q *=1.753, 1.721, 1.703, 
Q * = 0.796 

1.557, 
0.815, 0.858, 0.932, 1.046: 1.209: 1.472, 2 

The dependence Q* (k) for fixed angles b (boundary conditions (1) from (1.2) for 
k # 0) is shown in Fig. 1, 

Let us note that (2.3), (2.4) are invariant relative to replacement of 6 by n - b, go 
by -go, la 0 by - k 0. Hence, the results for b > 3t / 2 can be obtained from those presen- 
ted by replacing b by TX - b. 

4. Asymptotic volus of the upper critical load. Let us turn to the 
dimensional variable P -= QEy!‘ye4. Then for sufficiently thin shells under the support 
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Fig, 1 

Fig. 2 

conditions (l), (2) from (1.2). the values of the 
upper critical loads are determined by the for- 

where Q* have been found in Sect. 3, The quan- 
tities ni were not sought here. In the case of an 
absolutely fixed support and a fixed hinge jboun- 
dary condition (3) from (1.2) for k = M), Q* = 

4. This result has been obtained earlier by Po- 

gorelov [S]. 
Shown in Fig. 2 is the development of theedge 

effect as a function of the magnitude of the load 

Q (boundary condition (1) from (1.2) for k = ~1, 

b = 0.8 fer e2 = 0.109. iOWz i. The values of Q 

equal to 0.458, 0.639, 0.827 wrrespond to cur- 
ves 1 - 3. 

It is seen that buckling, i. e. the appearance of new equilibrium modes, is determined 
mainly in the edge effect zone. Shown for comparison in Fig. 3 are the results of wm- 
puting h, (E) by the method of “adjustment” [6] (solid line) and the asymptotic method 
(dashes) for Q=O.827, @ = 9.i99*10-2 for 5 E [O.i;, 0.81 (for E < 0.4, ]h, (g) 1 d 
10-q. 

The authors are deeply grateful to L.B.Tsariuk for attention to the research. 
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Depending on the properties of the ski jump, a skier completes his flight in 2.5- 
4.5 set and can influence his motion trajectory in the air by changing the angle 

of attack of the body. Query: How should a sportsman control his body in flight 
in order to touch down at the greatest distance? 

A formulation of this problem and its numerical solution on an electronic computer 
as an optimum control problem are presented below under the following assumptions: 
motion of the center of mass of a skier - ski system subjected to gravity, a drag R and 
a lift Y is considered. The equations of motion and the initial conditions are 

dy 
-$= vsiri8 

R = ‘I2 p v2 S c,, Y = ‘I, p u2 scv 
t = 0, z = 0, y = 0, v = UC, 0 = 0, 

Here t is the time, 2, y, v, 0 are the horizontal range, height, modulus of the velocity 

and slope of the velocity to the z-axis. respectively, m is the system mass, g the acce- 
leration of gravity, P the air density, S the characteristic area, and c, and cv the aero- 
dynamic coefficients. 

The dependence of cv and cX on the angle of attack a are taken from Cl], where ex- 
perimental curves obtained as a result of wind tunnel tests on skiers are presented. For 
convenience in the calculations. these curves have been approximated by the dependen- 

cies cr, (a) = - 0.000250 u* + 0.0228 a - 0.0920 and c, (a) = 0.0103 cc. The angleof 
attack can vary between amin (t) and arnnX it). 

The motion is modeled on the profile of the Planitsa (Yugoslavia) jump, on which the 
absolute world’s record jump of 165 m was established (see Fig. 1 ; a diagram of the 
angles and forces acting on the skier in flight is given in the upper right comer). 


